1.13 сравнение дробей готовое домашнее задание. Сравнение чисел
Не только простые числа можно сравнивать, но и дроби тоже. Ведь дробь — это такое же число как, к примеру, и натуральные числа. Нужно знать только правила, по которым сравнивают дроби.
Сравнение дробей с одинаковыми знаменателями.
Если у двух дробей одинаковые знаменатели, то такие дроби сравнить просто.
Чтобы сравнить дроби с одинаковыми знаменателями, нужно сравнить их числители. Та дробь больше у которой больше числитель.
Рассмотрим пример:
Сравните дроби \(\frac{7}{26}\) и \(\frac{13}{26}\).
Знаменатели у обоих дробей одинаковые равны 26, поэтому сравниваем числители. Число 13 больше 7. Получаем:
\(\frac{7}{26} < \frac{13}{26}\)
Сравнение дробей с равными числителями.
Если у дроби одинаковые числители, то больше та дробь, у которой знаменатель меньше.
Понять это правило можно, если привести пример из жизни. У нас есть торт. К нам в гости могут прийти 5 или 11 гостей. Если придут 5 гостей, то мы разрежем торт на 5 равных кусков, а если придут 11 гостей, то разделим на 11 равных кусков. А теперь подумайте в каком случаем на одного гостя придется кусок торта большего размера? Конечно, когда придут 5 гостей, кусок торта будет больше.
Или еще пример. У нас есть 20 конфет. Мы можем поровну раздать конфеты 4 друзьям или поровну поделить конфеты между 10 друзьями. В каком случае у каждого друга будет конфет больше? Конечно, когда мы разделим только на 4 друзей, количество конфет у каждого друга будет больше. Проверим эту задачу математически.
\(\frac{20}{4} > \frac{20}{10}\)
Если мы до решаем эти дроби, то получим числа \(\frac{20}{4} = 5\) и \(\frac{20}{10} = 2\). Получаем, что 5 > 2
В этом и заключается правило сравнения дробей с одинаковыми числителями.
Рассмотрим еще пример.
Сравните дроби с одинаковым числителем \(\frac{1}{17}\) и \(\frac{1}{15}\) .
Так как числители одинаковые, больше та дробь, где знаменатель меньше.
\(\frac{1}{17} < \frac{1}{15}\)
Сравнение дробей с разными знаменателями и числителями.
Чтобы сравнить дроби с разными знаменателями, необходимо дроби привести к , а потом сравнить числители.
Сравните дроби \(\frac{2}{3}\) и \(\frac{5}{7}\).
Сначала найдем общий знаменатель дробей. Он будет равен числу 21.
\(\begin{align}&\frac{2}{3} = \frac{2 \times 7}{3 \times 7} = \frac{14}{21}\\\\&\frac{5}{7} = \frac{5 \times 3}{7 \times 3} = \frac{15}{21}\\\\ \end{align}\)
Потом переходим к сравнению числителей. Правило сравнения дробей с одинаковыми знаменателями.
\(\begin{align}&\frac{14}{21} < \frac{15}{21}\\\\&\frac{2}{3} < \frac{5}{7}\\\\ \end{align}\)
Сравнение .
Неправильная дробь всегда больше правильной. Потому что неправильная дробь больше 1, а правильная дробь меньше 1.
Пример:
Сравните дроби \(\frac{11}{13}\) и \(\frac{8}{7}\).
Дробь \(\frac{8}{7}\) неправильная и она больше 1.
\(1 < \frac{8}{7}\)
Дробь \(\frac{11}{13}\) правильная и она меньше 1. Сравниваем:
\(1 > \frac{11}{13}\)
Получаем, \(\frac{11}{13} < \frac{8}{7}\)
Вопросы по теме:
Как сравнить дроби с разными знаменателями?
Ответ: надо привести к общему знаменателю дроби и потом сравнить их числители.
Как сравнивать дроби?
Ответ: сначала нужно определиться к какой категории относятся дроби: у них есть общий знаменатель, у них есть общий числитель, у них нет общего знаменателя и числителя или у вас правильная и неправильная дробь. После классификации дробей применить соответствующее правило сравнения.
Что такое сравнение дробей с одинаковыми числителями?
Ответ: если у дробей одинаковые числители, та дробь больше у которой знаменатель меньше.
Пример №1:
Сравните дроби \(\frac{11}{12}\) и \(\frac{13}{16}\).
Решение:
Так как нет одинаковых числителей или знаменателей, применяем правило сравнения с разными знаменателями. Нужно найти общий знаменатель. Общий знаменатель будет равен 96. Приведем дроби к общему знаменателю. Первую дробь \(\frac{11}{12}\) умножим на дополнительный множитель 8, а вторую дробь \(\frac{13}{16}\) умножим на 6.
\(\begin{align}&\frac{11}{12} = \frac{11 \times 8}{12 \times 8} = \frac{88}{96}\\\\&\frac{13}{16} = \frac{13 \times 6}{16 \times 6} = \frac{78}{96}\\\\ \end{align}\)
Сравниваем дроби числителями, та дробь больше у которой числитель больше.
\(\begin{align}&\frac{88}{96} > \frac{78}{96}\\\\&\frac{11}{12} > \frac{13}{16}\\\\ \end{align}\)
Пример №2:
Сравните правильную дробь с единицей?
Решение:
Любая правильная дробь всегда меньше 1.
Задача №1:
Сын с отцом играли в футбол. Сын из 10 подходов в ворота попал 5 раз. А папа из 5 подходов попал в ворота 3 раза. Чей результат лучше?
Решение:
Сын попал из 10 возможных подходов 5 раз. Запишем в виде дроби \(\frac{5}{10} \).
Папа попал из 5 возможных подходов 3 раз. Запишем в виде дроби \(\frac{3}{5} \).
Сравним дроби. У нас разные числители и знаменатели, приведем к одному знаменателю. Общий знаменатель будет равен 10.
\(\begin{align}&\frac{3}{5} = \frac{3 \times 2}{5 \times 2} = \frac{6}{10}\\\\&\frac{5}{10} < \frac{6}{10}\\\\&\frac{5}{10} < \frac{3}{5}\\\\ \end{align}\)
Ответ: у папы результат лучше.
Правила сравнения обыкновенных дробей зависят от вида дроби (правильная, неправильная, смешанная дробь) и от знаменателен (одинаковые или разные) у сравниваемых дробей.
В этом разделе рассматриваются варианты сравнения дробей, имеющих одинаковые числители или знаменатели.
Правило. Чтобы сравнить две дроби с одинаковыми знаменателями, надо сравнить их числители. Больше (меньше) та дробь, у которой числитель больше (меньше).
Например, сравнить дроби:
Правило. Чтобы сравнить правильные дроби с одинаковыми числителями, надо сравнить их знаменатели. Больше (меньше) та дробь, у которой знаменатель меньше (больше).
Например, сравнить дроби:
Сравнение правильных, неправильных и смешанных дробей между собой
Правило. Неправильная и смешанная дроби всегда больше любой правильной дроби.
Правильная дробь но определению меньше 1, поэтому неправильная и смешанная дроби (имеющие в своем составе число, равное или больше 1) больше правильной дроби.
Правило. Из двух смешанных дробей больше (меньше) та, у которой целая часть дроби больше (меньше). При равенстве целых частей смешанных дробей больше (меньше) та дробь, у которой больше (меньше) дробная часть.
В повседневной жизни нам часто приходится сравнивать дробные величины. Чаще всего это не вызывает каких-либо трудностей. Действительно, всем понятно, что половина яблока больше, чем четверть. Но когда необходимо записать это в виде математического выражения, это может вызвать затруднения. Применяя следующие математические правила, вы легко можете справиться с этой задачей.
Как сравнивать дроби с одинаковыми знаменателями
Такие дроби сравнивать удобнее всего. В этом случае используйте правило:
Из двух дробей с одинаковыми знаменателями, но разными числителя, большей будет та, числитель которой больше, а меньшей – та, числитель которой меньше.
Например, сравнить дроби 3/8 и 5/8. Знаменатели в этом примере равны, следовательно, применяем это правило. 3<5 и 3/8 меньше, чем 5/8.
И действительно, если разрезать две пиццы на 8 долей, то 3/8 доли всегда меньше, чем 5/8.
Сравнение дробей с одинаковыми числителями и разными знаменателями
В этом случае сравнивают размеры долей-знаменателей. Следует применять правило:
Если у двух дробей числители равны, то больше та дробь, знаменатель которой меньше.
Например, сравнить дроби 3/4 и 3/8. В этом примере числители равны, значит, используем второе правило. У дроби 3/4 знаменатель меньше, чем у дроби 3/8. Следовательно 3/4>3/8
И действительно, если вы съедите 3 куска пиццы, разделенной на 4 части, то будете более сыты, чем если бы съели 3 куска пиццы, разделенной на 8 частей.
Сравнение дробей с разными числителями и знаменателями
Применяем третье правило:
Сравнение дробей с разными знаменателями нужно привести к сравнению дробей с одинаковыми знаменателями. Для этого необходимо привести дроби к общему знаменателю и использовать первое правило.
Например, необходимо сравнить дроби и . Для определения большей дроби приведем эти две дроби к общему знаменателю:
- Теперь найдём второй дополнительный множитель: 6:3=2. Записываем его над второй дробью:
Правила сравнения обыкновенных дробей зависят от вида дроби (правильная, неправильная, смешанная дробь) и от знаменателей (одинаковые или разные) у сравниваемых дробей. Правило . Чтобы сравнить две дроби с одинаковыми знаменателями, надо сравнить их числители. Больше (меньше) та дробь, у которой числитель больше (меньше). Например , сравнить дроби:
Сравнение правильных, неправильных и смешанных дробей между собой.
Правило . Неправильная и смешанная дроби всегда больше любой правильной дроби. Правильная дробь по определению меньше 1, поэтому неправильная и смешанная дроби (имеющие в своем составе число, равное или больше 1) больше правильной дроби.
Правило . Из двух смешанных дробей больше (меньше) та, у которой целая часть дроби больше (меньше). При равенстве целых частей смешанных дробей больше (меньше) та дробь, у которой больше (меньше) дробная часть.
Например , сравнить дроби:
Аналогично сравнению натуральных чисел на числовой оси большая дробь стоит правее меньшей дроби.
В этом уроке мы научимся сравнивать дроби между собой. Это очень полезный навык, который необходим для решения целого класса более сложных задач.
Для начала напомню определение равенства дробей:
Дроби a /b и c /d называются равными, если ad = bc .
- 5/8 = 15/24, поскольку 5 · 24 = 8 · 15 = 120;
- 3/2 = 27/18, поскольку 3 · 18 = 2 · 27 = 54.
Во всех остальных случаях дроби являются неравными, и для них справедливо одно из следующих утверждений:
- Дробь a /b больше, чем дробь c /d ;
- Дробь a /b меньше, чем дробь c /d .
Дробь a /b называется большей, чем дробь c /d , если a /b − c /d > 0.
Дробь x /y называется меньшей, чем дробь s /t , если x /y − s /t < 0.
Обозначение:
Таким образом, сравнение дробей сводится к их вычитанию. Вопрос: как не запутаться с обозначениями «больше» (>) и «меньше» (<)? Для ответа просто приглядитесь к тому, как выглядят эти знаки:
- Расширяющаяся часть галки всегда направлена к большему числу;
- Острый нос галки всегда указывает на меньшее число.
Часто в задачах, где требуется сравнить числа, между ними ставят знак «∨». Это - галка носом вниз, что как бы намекает: большее из чисел пока не определено.
Задача. Сравнить числа:
Следуя определению, вычтем дроби друг из друга:
В каждом сравнении нам потребовалось приводить дроби к общему знаменателю. В частности, используя метод «крест-накрест» и поиск наименьшего общего кратного. Я намеренно не акцентировал внимание на этих моментах, но если что-то непонятно, загляните в урок «Сложение и вычитание дробей » - он совсем легкий.
Сравнение десятичных дробей
В случае с десятичными дробями все намного проще. Здесь не надо ничего вычитать - достаточно просто сравнить разряды. Не лишним будет вспомнить, что такое значащая часть числа. Тем, кто забыл, предлагаю повторить урок «Умножение и деление десятичных дробей » - это также займет буквально пару минут.
Положительная десятичная дробь X больше положительной десятичной дроби Y , если в ней найдется такой десятичный разряд, что:
- Цифра, стоящая в этом разряде в дроби X , больше соответствующей цифры в дроби Y ;
- Все разряды старше данного у дробей X и Y совпадают.
- 12,25 > 12,16. Первые два разряда совпадают (12 = 12), а третий - больше (2 > 1);
- 0,00697 < 0,01. Первые два разряда опять совпадают (00 = 00), а третий - меньше (0 < 1).
Другими словами, мы последовательно просматриваем десятичные разряды и ищем различие. При этом большей цифре соответствует и большая дробь.
Однако это определение требует пояснения. Например, как записывать и сравнивать разряды до десятичной точки? Вспомните: к любому числу, записанному в десятичной форме, можно приписывать слева любое количество нулей. Вот еще пара примеров:
- 0,12 < 951, т.к. 0,12 = 000,12 - приписали два нуля слева. Очевидно, 0 < 9 (речь идет о старшем разряде).
- 2300,5 > 0,0025, т.к. 0,0025 = 0000,0025 - приписали три нуля слева. Теперь видно, что различие начинается в первом же разряде: 2 > 0.
Конечно, в приведенных примерах с нулями был явный перебор, но смысл именно такой: заполнить недостающие разряды слева, а затем сравнить.
Задача. Сравните дроби:
- 0,029 ∨ 0,007;
- 14,045 ∨ 15,5;
- 0,00003 ∨ 0,0000099;
- 1700,1 ∨ 0,99501.
По определению имеем:
- 0,029 > 0,007. Первые два разряда совпадают (00 = 00), дальше начинается различие (2 > 0);
- 14,045 < 15,5. Различие - во втором разряде: 4 < 5;
- 0,00003 > 0,0000099. Здесь надо внимательно считать нули. Первые 5 разрядов в обеих дробях нулевые, но дальше в первой дроби стоит 3, а во второй - 0. Очевидно, 3 > 0;
- 1700,1 > 0,99501. Перепишем вторую дробь в виде 0000,99501, добавив 3 нуля слева. Теперь все очевидно: 1 > 0 - различие обнаружено в первом же разряде.
К сожалению, приведенная схема сравнения десятичных дробей не универсальна. Этим методом можно сравнивать только положительные числа . В общем же случае алгоритм работы следующий:
- Положительная дробь всегда больше отрицательной;
- Две положительные дроби сравниваются по приведенному выше алгоритму;
- Две отрицательные дроби сравниваются так же, но в конце знак неравенства меняется на противоположный.
Ну как, неслабо? Сейчас рассмотрим конкретные примеры - и все станет понятно.
Задача. Сравните дроби:
- 0,0027 ∨ 0,0072;
- −0,192 ∨ −0,39;
- 0,15 ∨ −11,3;
- 19,032 ∨ 0,0919295;
- −750 ∨ −1,45.
- 0,0027 < 0,0072. Здесь все стандартно: две положительные дроби, различие начинается на 4 разряде (2 < 7);
- −0,192 > −0,39. Дроби отрицательные, 2 разряд разный. 1 < 3, но в силу отрицательности знак неравенства меняется на противоположный;
- 0,15 > −11,3. Положительное число всегда больше отрицательного;
- 19,032 > 0,091. Достаточно вторую дробь переписать в виде 00,091, чтобы увидеть, что различие возникает уже в 1 разряде;
- −750 < −1,45. Если сравнить числа 750 и 1,45 (без минусов), легко видеть, что 750 > 001,45. Различие - в первом же разряде.
Популярное
- Как выбрать крепления для лыжных ботинок
- Тибетская йога сна и сновидений скачать fb2
- Похудение с помощью Глюкофажа: правда и домыслы о самом препарате и его результативности Глюкофаж 500 для похудения как принимать отзывы
- Фразеологический словарь русского языка что такое почва уходит из-под ног, что означает и как правильно пишется
- Владимир Осипов — о разоблачениях Football Leaks Кто хозяин футбольного клуба монако
- Разные виды отжиманий, варианты отжиманий
- Баскетбольная команда угмк
- Комплексы пальчиковой гимнастики
- Школа плавания вита. Плавание
- Сколько олимпийцев из России все же поедет в Рио?